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A procedure for constructing a family of Lyapunov functions, which enable one to obtain criteria for asymptotic stability in the 
first approximation, is proposed for the systems of differential equations for the motion of a material system of very general 
form. The problem of constructing control systems which ensure asymptotic stability “in the large” and the problem of improving 
the quality of the transient are considered. Examples are given of the use of the proposed procedure in the problem of stabilizing 
the planar motions of a satellite in an elliptic orbit and in the problem of stabilizing the programmed motion of a mathematical 
pendulum with a moving suspension point and of a gyropendulum on a moving base. 0 2001 Elsevier Science Ltd. All rights 
reserved. 

A family of Lyapunov functions for investigating the stability “in the small” of the perturbed motion 
of mechanical systems has been constructed in [l]. This approach was used in [2] to construct mechanical 
systems which possess a programmed motion which is asymptotically stable “on the whole”. 

Below, these results are extended to a wider class of material systems which, apart from mechanical 
systems, also includes systems of a non-mechanical nature. Moreover, the family of Lyapunov functions 
which is constructed here is used to improve the quality of the transient in mechanical systems by means 
of optimal control. 

1. CONSTRUCTION OF A FAMILY OF LYAPUNOV FUNCTIONS FOR 
INVESTIGATING STABILITY IN THE FIRST APPROXIMATION 

Suppose the perturbed motion of a material system is described by the following vector equations 

A,(x,,i,,~~,r).?, =B,(x,,i,r~~rt), N,(x,.i,r~~.t)~*=K,(x,.~,,X~,t) (1.1) 

where Ai and Ni are II x n and m X m matrices,xt and Bi are n-dimensional vectors andxz and Kt are 
m-dimensional vectors. 

The elements At and ZVi and of the vectors Bi and Ki are assumed to be bounded, continuous and 
continuously differentiable in a certain bounded domain G{x x} which includes xl = 0, x1 = 0, x2 = 0 
when t 3 to. It is additionally assumed that det2 ]A, 1 > aI, det’ ]Nt 1 > a2 in the domain G when t 5 to, 
where 6i and S2 are certain positive constants. These conditions are necessary in to order to ensure the 
existence and uniqueness of the solutions of Eqs (1.1) in the domain G when t 2 to and for other 
objectives which are attained below. 

The problem involves the construction of Lyapunov functions such that these functions themselves 
and their time derivatives form a certain family of quadratic forms in x1, x2 with matrices with diagonal 
elements which are not identically zero and contain not only the Al, Bt, Nt, Kr occurring in (1.1) but 
also derivatives of the vector functions&, t). 

The meaning of the formulation of this problem lies in the fact that its solution opens up the possibility 
of obtaining an entire family of criteria for the asymptotic stability of the trivial solution of system (1.1) 
solely using the generalized Silvester’s criteria [3] in which, in addition to the parameters of the system, 
the arbitrary functionsf(xl, t) also occur. 

In the following sections of this paper, these Lyapunov functions will be used to construct control 
systems which ensure asymptotic stability “in the large” and “on the whole” as well as to evaluate and 
improve the quality of the transient. 

Several of these problems have been solved previously [l, 21 in the case of mechanical systems with 
a choice of the functionf(xi, t) in the linear form H(t) x1. 
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834 I. A. Mulcbametzyanov 

Note that, unlike mechanical systems, the matrices Ai and Ni here depend on xi and cannot be 
symmetric and positive-definite. 

In order to symmetrize these matrices and make them positive-definite, equations (1.1) can be 
multiplied by the transposed matrices ATand NTrespectively. When this is done, Eqs (1.1) take the 
form 

A(x,.i,+t)i, =&x,,i,.x,,r), N(x,.i,,x,,t)i, =K(x,,i,.x*.t) (1.2) 

where A = ATAl, and N = NTNi are positive-definite and symmetric matrices and B = ATBl and 
K = NTRi are n- and m-dimensional vectors, respectively. 

We now make the substitution 

x’I = y +f(x,, t), JO, 1) = 0 (1.3) 

where f(xi, t) is an arbitrary n-dimensional vector function with bounded and differentiable elements 
which admits of an infinitesimal higher limit. On multiplying the first equation of (1.2) scalarly by the 
vector y = x1 - f(xi, t) and the second equation by the vector x2 and then adding them, we obtain 
equations, which after making the substitution 

af af af i, =Y+~Y+~f(x,.‘)+~ 
I I 

and using the equality 

yFAj = 
1 TdA 

;$(y'Ay,-ly -icy 
reduce to the form 

1 Td 

+Ty dt 
1 FdN 

--y+~;K+~x~ -x2 
dt 

(1.4) 

We will assume the B, K, and fare expandable in convergent power series inxi, x1, q. The terms of 
the first approximation of these vectors are expressed as follows: 

Then 

Retaining terms of no higher than second order infinitesimals on the right-hand side of Eqs 
$.~~itnd replacing the vector y on the right-hand side by [xi - H(f)xi], where H(r) = ($9x1),,, we 

+$(yTAy+x:Nx,)=-i:E, -i;(r, +l-H+I-‘H)x, -x;H’(rH-r,)x, + 
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where 

r=AH-($$+($), 
r, = A(H2 + ri) 

From the matrices of the first and second terms on the right-hand side of Eq, (1.5), we separate out 
the symmetric and skew symmetric parts 

where D and C are the symmetric and G and E are the skew symmetric parts of the matrices. Transferring 
the terrn_$Crt to the left-hand side, we obtain 

‘5 
zz 

= -+i, - irEx, -XT H’(l-H-r,)+ 
[ .E 

,+ 

+4[(~)o+$3~2+i:[(~)~+(=3~2--0T[(~)~+(-$$~~2 (14 

Here, the following relations have been taken into account 

The matriz H has n2 arbitrary elements. Consequently, the function V, which depends on them, can 
be considered as the required class of Lyapunov functions since the right-hand side of equality (1.6), 
which is the total derivative of the function Vwith respect to t, is a quadratic form with respect to 
xr,xl,xs with a matrix, the diagonal elements of which are not identically equal to zero. This is impossible 
to achieve when H = 0. 

There is therefore the possibility of obtaining the entire family of criteria for the asymptotic stability 
of the unperturbed motion in the first approximation by solely making use of the generalized Silvester’s 
criteria [3]. 

2. THE CONSTRUCTION OF SYSTEMS WITH 
A PROGRAMMED MOTION WHICH IS ASYMPTOTICALLY 

STABLE “IN THE LARGE” 

We introduce the control vectors Qr and Q2 into the right-hand side of system (1.2) and obtain 
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When x1 is replaced by y using formula (1.3), scalar multiplication of the first equation of (2.1) by y 
and the second equation by xz leads to the following analogue of Eq. (1.4) 

If the vectors Qt and Q2 are chosen in the form 

Q, =-Dy-fix, -B+A ($)y+A[($-)f+$]-;$y 

we then obtain 

i$(y’Ay+~iN~~ +x~F;x,)=-y’Dy+ f 4 +x1 ( T 

(2.3) 

(2.4) 

where D, Ft, F2 are symmetric, positive-definite matrices. 
The function yr Ay + x~iV& + x[Fixl, constructed as a positive-definite matrix for all x1, x1, x2, t, 

admits of an intinitesimal higher limit and an infinitely large lower limit. Consequently, when the function 
vr Ft + xTF1/2)x, is negative-definite, the right-hand side of Eq. (2.4) will be negative-definite with 
respect to x1, x1, x2 and, in this case, the programmed state x1 = xi = 0, x2 = 0 of system (2.1) will be 
stabilized “in the large”. If this approach is applied to the stabilization of a preset state “on the whole” 
then certain additional conditions have to be borne in mind. 

We will now explain these conditions. For this purpose, we consider the right-hand sides of Eqs. (2.3) 
which have the terms 

containing the highest derivatives x1 and x2. 
Note that these derivatives do not occur in the equations of the first approximation since the terms 

containing them are of a high order of smallness. Consequently, when there terms exist, generally 
speaking, one can only speak about stability in a bounded domain of initial perturbations. If, however, 
the matrices Ai and ZVt are obviously independent of x1 and the matrix Nr is also independent of x2, 
the right-hand sides of equality (2.3) do not contain higher derivatives. In this case, the vectors Qi and 
Q2 ensure the conditions for the asymptotic stability of the unperturbed state of the system “on the 
whole”. 

In spite of the fact that the vectors x1 and x2 are contained in Ai and ZV,, the following scheme can 
be proposed to construct Qr and Q2 such that the unperturbed state of the system is stable “on the 
whole”. 

We multiply Eqs (1.1) by the non-singular matrices AA-’ 1 and N.7’ respectively, where A(x,, x2, t) 
and N(xi, t) are arbitrary bounded positive-definite symmetric matrices, with bounded derivatives with 
respect to all variables for all x1, x2, t 3 tb which satisfy generalized Silvester’s criteria. Then, when the 
“generalized forces” of the controls Qi and Q2 are introduced into the right-hand side, Eqs (1.1) take 
the form 

A(x, ,x,,t)i, = AA;‘& + AA;‘Q, 

N(x,,r)i2 = NN;‘K, + NN;‘Q, 

Multiplying the first equation scalarly byy and the second equation byx2, we obtain an analogue of 
Eq. (2.2) from which it follows that, in the case of the values 
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Q2 

we obtain an equation of the form of (2.4). 
When the controls are constructed in this way, the conditions for the existence and uniqueness of 

the solutions of system (1.1) are not affected in the whole of the phase space for all t 3 to. 

3. IMPROVEMENT OF THE QUALITY OF THE TRANSIENT OF 
A MECHANICAL SYSTEM BY OPTIMAL CONTROL 

Consider the mechanical system 

It has been shown in [2] that, for the choicef = H( t)x and the generalized force vector Q in the form 

aT aFi 1 aA&, +x,0 
Q=-D~-Fx+;A’~-$+~+~ at 

dAHx 
y-CHx+$-;2+- 

dt (3.1) 

the system possesses a preset motion q&) which is stabilized “on the whole”. 
Here 

y = i - H(t)x, T2 = idTAdTi = $ y’Ay 

b(x,t) = A(q, +x&j0 +a(% +x,t), b, = 4;Aijo +2&+,, 

A’ is an n x n-matrix with the elements ai = xr HT&,/&, au is an element of the matrix A, H(t) is an 
arbitrary bounded II x n-matrix with a bounded and continuous derivative with respect to t, G is a skew 
symmetric matrix with elements gvi = - ab Jaxi + ab&,, b,, and bi are elements of the vector b, and D 
and F are positive-definite symmetric matrices. 

Here, for the deviations x = q - qo(t) from the preset motion, we have the Lyapunov function and 
its time derivative 

V=Ti+xTFx12, ti=-yTDy+xT(HTF+ti12)x (3.2) 

where (H’F + F/2) is a negative-definite matrix. 
In the case of the non-linear substitutiony = f - f(x,,f), using a non-linear functionf(x, t) with bounded 

and differentiable elements, which admits of an infinitely small higher limit and with the choice of the 
generalized force in a form which differs from (3.1) in that the Hx is replaced byf(x, t), we obtain 

V = Ti+x’Fx/2, ti=-yrDy+fT(x,t)Fx+xT~x/2 

If the functionf(x, t) and the matrix F are chosen such that the function fT Fx + xT Fx/2 is negative- 
definite, the quality of the transient will have the following value 

y’Dy- f’Fx+;x?x dt = V,, v, = V(4)) (3.3) 

In order to improve the quality of the transient, we add an additional component M(x, f, t)u to the 
vector Q, where M is an II x r-matrix and u is an r-dimensional control vector. Following the approach 
proposed earlier [4], we seek the integrand of the functional for the quality of the optimal control in 
the form 
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w = F, (x, i-, r) + uTR(x, k, r)u 

where R is a positive-definite bounded symmetric t X r-matrix. 
We now construct the function [5] 

BO = ti+uTMTy+15; +uTRt4 

From the condition L%?‘/c?u = 0, we obtain u” = -R-‘#y/2 and, from the condition B” = 0, we have 

F;= -ti+yTMPMTyt4 

At the same time, we have 

wo= -\i + yTMR-‘M’y/2 

and the following criterion for the quality of the transient 

y’Dy- fTFx++xTbx ++Y~MR-~M~~ dt= V, 1 
where V. is the value of V = Ti + xT Fx/2 when t = to. 

The addition of the optimal control to Q has therefore improved the quality of the transient since 
the magnitude of the quality functional when u = 0 (the left-hand side of (3.3)) has been reduced by 

yTMR-‘MTydt 

If there is no need to require that the functional 

7 W’dt 
‘0 

should be a minimum, the function Fl can then be chosen from the condition 

OSF;C +yTMR-‘MTy/4 

In this case, a guaranteed estimated of the quality of the transient 

7 W’dt 4 V, 
10 

is attained. 
Note that, if the problem is solved within the framework of the equations of the first approximation, 

the terms 

aT ar; 
+A’y-l+sx 

ax 

of the second order of smallness in the expression for Q can be equated to zero. In this case, if of the 
matrices H = (8f/&)o D, F it is required that H = HT and the matrices 

should be positive-definite then, subject to the condition that the matrix 

-(HTF’+p/2), where F’= F-dAHIdt-AH2 
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should be positive-definite the vector Q can be constructed in the form 

4. EXAMPLES 

1. Stabilization of the orientation of a satellite in an elliptic orbit. When the gravitational moment is 
used to stabilize the rotational motion of the orientation of a satellite, the following equation of motion 
holds [7] 

&-I(v)&+ m(v)sina = 21(v)+rc 

where 

l(v) = 
2s sin v 

I+&cOSV’ 
m(v) = 

n2 

l+&coSV 
, r12=3 

A-C 
-, (x=20 

B 

0 is the angle of deviation of the 02 axis of the satellite from the radial position, v is the true 
anomaly, E is the orbit eccentricity (0 < E < 1) and derivatives with respect to Y are denoted by dots. 
We take the control vector u in the form of the sum 

u = uo(v,a,&)+ M 

where u. is the control moment in the case of the unperturbed motion and Mis the stabilizing moment. 
In this case, the equation of the perturbed motion has the form [6] 

x=-f(v)i-~(v,x)sin~+M, g(v,x)=2m(v)cos(a,+t) 

We make the substitution 

y=f+Hx. H=const>O 

On replacing f by P = j - Hy + H%, we obtain 

jl = -I(v)(y - Hx) - H2x + Hy - g(v. x)sin f + M 

We multiply this equation by y and choose M in the form 

M = -D,y - F,x 

and introduce the notation 

g(v.x) . X 
D=D,-H+f(v), F=I;;+H’-H&v)+-sin- 

X 2 

After replacingy in the expression ~Fx) and transferring (xFx) to the left-hand side, we obtain 

If it is required that the conditions 

D>O, F>O, FH+O 

be satisfied, then, in the case of control moment (4.1), the unperturbed motion will be stabilized on 
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the whole. Here, the quality of the transient is determined by the equality 

iby +( FH-$11 dr=y;+Fx;; yo=y(ro),xo=x(ro) 

2. Stabilization of theprogrammed motion of a mathematicalpendulum with a movingpoint of suspension. 
Suppose the point of suspension of a pendulum executes arbitrarily specified planar motions, which 
are described by the laws O(t) and v(t), along the vertical and horizontal axes of a fixed system of 
coordinates. 

When 

m= 1, I= l/a, a>0 

where I is the length of the pendulum and m is the mass, the following equation of motion [8] 
holds 

$+ali(t)coscp+a6sincp+agsincp = M, 

We substitute ‘p = cpo(f) + X, where ‘p. is the specified programme and we represent the control moment 
in the form of the sum 

M, =M,+M, MO =qo +al;cos(x+cpo.t) 

where A4 is the stabilizing moment. We then obtain the equation of the perturbed motion in the form 

i+ksin(x+cp,)= M, k=a@+g) 

This equation can be represented in the form 

f=-g(x,f)sint+M, g=2kco 
4 > 

‘po+s 

Hence, we obtain an equation which is a special case of the equation of the perturbed motion obtained 
in Example 1 when I= 0. Consequently, the equality 

;;(y2+Fx2)=-Dy2- FH-f x2 
( I 

D=D,-H, F=e+H2+msint, y=i+Hx, H=const>O 
X 

holds, where D1 and FI are elements of the stabilizing moment (4.1) while satisfy the conditions 
D > 0, F > 0. 

The quality of the transient (4.2) is attained in the case of stabilization with such a moment. 

3. Stabilization of the programmed motion of a gyropendulum on a moving base. Suppose a gyropendulum, 
which has an angular spin velocity equal to 50 = t;(t), is placed on a platform which executes vertical 
motion in accordance with the law [qt. The position of the 02 axis of symmetry of the gyropendulum 
relative to a fixed system of coordinates [ql (the 05 axis is the vertical axis) is specified by the angles 
01 and p [3, p. 561. Here, the kinetic energy T and the potential energy II of the gyropendulum take the 
form 

T ’ =~A(&2+gZcos2a)++C($+@sina)2 - 

-Mf~o(drsinacosp+pcosasinf3)+~M~~ 

ll=Mg~+MglcosacosP 
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where M is the mass, I is the distance from the point of support to the centre of gravity,A is the moment 
of inertia about the OX and OY axis and C is the moment of inertia about the 02 axis. 

We shall describe the motion of the gyropendulum by means of the Lagrange equations 

d aT2 aT2 _ an 
--_-----+Q; q, =o!, q2=& q3=<p 
dt aq aq aq 

In order to obtain the equations of the perturbed motion, we replace 4 by q&) + x and obtain 

T = T2 + T, + To 

T2 = :A($ + ii cos’ a) + $ C(ii + ii sin2 a) - C.k,& sin a 

7; = i%(x,t), q = ;b&.r) 

h = @I 9 b2. b3) 

b, = Ati, - M&, sin(a, +x, )cos@, +x2) 

b2 = [A cos’(a, + x, ) + Csin(a, + x, )J& - C&-, sin(a,, + x, ) - 

-MIt, cos(a, + x,)sin(& f x2) 

b3 = -C&-, sin(as + xl ) + C@, 

We note that 

b0 = Aliz; + @ cos2(a, + x, )] + q& - &, sin(a, + x, )I2 - 

-2Mf&&, sin(a, + x,)cos@a +x2) + 

+& cos(a, + xJ)sin(& +x2)] + M4: 

a,, = A, al2 = a,3 = u2, = a3, =O, ~~~=Acos~(9~+x,)+Csin~(a,,+x,) 

=23 = u32 = -Csin(aa +x, ),a33 = C 

are the elements of the 3 x 3-matrixA’ of the quadratic form Tz. 
We choose the three-dimensional vector of the generalized forces in the form (3.1) with the addition 

of the term XI/aq to the right-hand side and with ofA replaced by A’. In this case, the programmed motion 

a = a~(& P = Bo(O, 9 = ~(0 

occurs and it is stabilized as a whole. The quantities occmring in Q, which have not been indicated above, 
have the following expressions 

I 
T- = - 

2 
~(yf + yi ~0s~ a) + + C(yi + yz sin’ a) - Cy2y3 sin a, a = a0 + XI 

A’ is a 3 X 3-matrix with elements ail., which are defined in terms of the elements aV of the matrix A0 
in the form ah = x%‘&&3x,y = x - If (t)x, H(r) is an arbitrary 3 x 3-matrix with bounded and continuous 
elements, G is a skew symmetric 3 x 3-matrix with elements gq = -ab,Jdxi + ab&,, b, and bi are 
elements of the vector b, and D and F are positive-definite symmetric matrices. 

With this choice of Q, we have the Lyapunov function and its time derivative in the form (3.2), 
where H(t) is chosen such that the matrix (Hr F + F/2) is negative-definite. In this case, we obtain the 
following quality of the transient 

,$yTDy -x’( HTF+;]x]dt = V,. V, = V(r,) (4.3) 
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This quality can be improved by adding the additional component u” to Q and requiring that the 
functional of it 

41-v + (u”)2]dt 
'0 

should attain a minimum value. 
As in Section 3, we obtain that u” = -y/2 for which, in the case of the improved quality, we have a 

relation which differs from (4.3) in the addition of the termy2/2 to the integrand. Note that the value 
of the quality functional when u” = 0 is reduced by 

We will now consider one important special case when the vertical position of the axis of the 
gyropendulum os = &a = PO = PO = 0 is the unperturbed state in the case of a constant spin velocity 
around the 02 axis (‘p = o = const). Then, the position of the 02 axis is defined by the generalized 
coordinates q1 = OL, q2 = f3. 

In this case 

7-i =~A($+x~cos2x,)+$Cx:sin2x, 

q = f,b, + x2q, To = ;(cd + M&, bo = co2 + Mg, 

1 
T; = - 

2 
A(yf + y: cos2 xl ) + i Cyi sin2 xi 

6, = -IW(~ sinx, cosx2, b2 = -Cosinx, -IV&, cosx, sinx2 

g12=-g21 = cocosx, 

The elements of the matrix of the quadratic from T2 have the form 

a,, =A, au =Acos’x, +Csin’x,, al2 =+, =0 

Consequently, the equalities 

aAo = o 

ar 

ab, = o 

‘ax 

-Mlco sin xl cosx2 

-Mlio cos xl sin x2 R 

hold. 
We select H = -I, where I is the identity matrix. Then 

y=f+Ix 

alA”Hx -=_A”~-~ox= 
-Ai, 

aadt II B 

-(A cos’ xl + Csin2 x,)x2 * -(C- A)x,x2 

II Oaa, (C - A)sin 2x, 
-=o’ ax= 

ax 0 a:, =o 

aG2 = (A - C)x, sin 2x,, A’y = 
II 

0 

(A - C)x,y2 sin 2x, 

aT,= 
ax 

$C-A)fisin2x, x= 

I R 

$C-A)yzsin2x, 

0 ’ ax 0 
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an H -Mgl sin x, cos x2 0 -CWCOSX, 

z= -Mgl cos x, sin x2 cocosx, 0 

If the problem is solved in the first approximation, we have 

If we choose D and F in the form of diagonal constant matrices with positive elements dr, d2 and 
fi, f2 respectively, we obtain 

Q, = -x,(Mgl+d, +fi +Mf&,)-Cwxz -i,(d, -A) 

Q2=Cwr,-x,(Mgl+d,+f,+Ml&+-i,(d,-A) 

In this case, the Lyapunov function and its time derivative are expressed in the form 

3= -d, y: - d,y; -fix: - fd 

Consequently, the following quality for the transient holds 

T(d,y: +d,y; + f,x: + f2x:W = V,, V, = W,,) 
to 

(4.4) 

If the component ZA’ of the optimal control is added to the vector Q in order to improve the quality 
of the transient then, following what has been stated in Section 3, we have u” = -y/2 and, also, an 
improved quality for the transient which differs from (4.4) in the addition of the term Cy: + y:)/2 to 
the integrand. 

In this case, the magnitude of the quality when u” = 0 is improved by an amount 

+ T(Y: + r; W 
to 
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