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A procedure for constructing a family of Lyapunov functions, which enable one to obtain criteria for asymptotic stability in the
first approximation, is proposed for the systems of differential equations for the motion of a material system of very general
form. The problem of constructing control systems which ensure asymptotic stability “in the large” and the problem of improving
the quality of the transient are considered. Examples are given of the use of the proposed procedure in the problem of stabilizing
the planar motions of a satellite in an elliptic orbit and in the problem of stabilizing the programmed motion of a mathematical
pendulum with a moving suspension point and of a gyropendulum on a moving base. © 2001 Elsevier Science Ltd. All rights
reserved.

A family of Lyapunov functions for investigating the stability “in the small” of the perturbed motion
of mechanical systems has been constructed in [1}. This approach was used in [2] to construct mechanical
systems which possess a programmed motion which is asymptotically stable “on the whole”.

Below, these results are extended to a wider class of material systems which, apart from mechanical
systems, also includes systems of a non-mechanical nature. Moreover, the family of Lyapunov functions
which is constructed here is used to improve the quality of the transient in mechanical systems by means
of optimal control.

1. CONSTRUCTION OF A FAMILY OF LYAPUNOV FUNCTIONS FOR
INVESTIGATING STABILITY IN THE FIRST APPROXIMATION

Suppose the perturbed motion of a material system is described by the following vector equations
A](x|,x|,x2,t)i| =B|(x|!i|0x21t)v N](xlsi'hvvat)x'Z =Kl(x|vx.]9x291) (1.1)

where Ay and N, are n X n and m X m matrices, x; and B, are n-dimensional vectors and x, and K, are
m-dimensional vectors.

The elements A; and N; and of the vectors B; and K are assumed to be bounded, continuous and
continuously differentiable in a certain bounded domain G{x, x} which includesx; = 0,x; =0,x, = 0
when ¢ = #,. It is additionally assumed that det?|4,| > 8,, det?|N;| > 3, in the domain G when ¢ = £,
where 8; and 3, are certain positive constants. These conditions are necessary in to order to ensure the
existence and uniqueness of the solutions of Eqs (1.1) in the domain G when ¢ = ¢; and for other
objectives which are attained below.

The problem involves the construction of Lyapunov functions such that these functions themselves
and their time derivatives form a certain family of quadratic forms in x,, x, with matrices with diagonal
elements which are not identically zero and contain not only the 4,, B,, Ny, K; occurring in (1.1) but
also derivatives of the vector functions f(x;, ¢).

The meaning of the formulation of this problem lies in the fact that its solution opens up the possibility
of obtaining an entire family of criteria for the asymptotic stability of the trivial solution of system (1.1)
solely using the generalized Silvester’s criteria [3] in which, in addition to the parameters of the system,
the arbitrary functions f(x, 7) also occur.

In the following sections of this paper, these Lyapunov functions will be used to construct control
systems which ensure asymptotic stability “in the large” and “on the whole” as well as to evaluate and
improve the quality of the transient.

Several of these problems have been solved previously [1, 2] in the case of mechanical systems with
a choice of the function f(xy, £) in the linear form H(¢) x;.
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834 I. A. Mukhametzyanov

Note that, unlike mechanical systems, the matrices 4; and N; here depend on x; and cannot be
symmetric and positive-definite.

In order to symmetrize these matrices and make them positive-definite, equations (1.1) can be
multiplied by the transposed matrices AT and N7 respectively. When this is done, Eqs (1.1) take the
form

A():,.X,,xz.t).'\;, =B(X|,xl,X2,t), N(Xl.xl,xZ.t)iz =K(X|,x|,X2,t) (1.2)

where 4 = AT 4, and N = NT N are positive-definite and symmetric matrices and B = A] B, and
- K = NTR, are n- and m-dimensional vectors, respectively.
We now make the substitution

xl =y+ﬂxl’t)’ ﬂov ’)=0 (1.3)

where f(x;, ?) is an arbitrary n-dimensional vector function with bounded and differentiable elements
which admits of an infinitesimal higher limit. On multiplying the first equation of (1.2) scalarly by the
vector y = x; — f(x;, t) and the second equation by the vector x, and then adding them, we obtain
equations, which after making the substitution

. _ . of of o
R Tty
and using the equality
d 1 7dA
Tayedt D Tany_ 1, 7dA
y Ay 2dt(,v y) LAPTRe

reduce to the form

l-”—'-(yTAy+x{Nx2)=yTB—yTA-a—f-y—yTA( of f+ af]+

2 Idt » o ox, ox, ot (14)
+-2—yT-Zy+X{K +EX{?X2

We will assume the B, K, and f are expandable in convergent power series in x;, x;, x5. The terms of
the first approximation of these vectors are expressed as follows:

_[9f _[9B) . .[9B 9B
f—(axn )ox“ B—(a"‘l )ox' +[a"1 l;tl +(a"2 )oxz

ai" 0 ! 3x, 0 ! ax2 0 2
3B 3B a Y
yTB=yT(5.—) X, +yr(—) X +x; (—) y
X1 o ox; ), ox; ),

T T
.7{ 0K ) . dK dK
xZTK = xlr(x)o Xy +xlr(5;l-l) Xy + x;(-ax—zjoxz

Then

Retaining terms of no higher than second order infinitesimals on the right-hand side of Egs
(1.4) and replacing the vector y on the right-hand side by [¥; — H(f)x;], where H(t) = (3f/ax;),, we
obtain

1 d T
EE‘(YTA)"P x3 Nxy)= =] Tty — 2T (0, + TH + TTHyx, - xTHT(CH =T )x, +
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T T
K 1({dN (K 3K
+x5 || =— -(——) To2 —xTHT| S8
xZ[(ax2)0+2 ar o [T 3k ), s H 5%, R

T T
fanY,
+X5 (axz )0 Xy — Xy (a_xz )o Hx| (1.5)

where

r=AH~(§_5 _l(i‘i)
ax‘ 0 2 d' 0

I, = A(H? +H)-(§,5J H—[ag)
0 (4]

o] —a_x-l.

From the matrices of the first and second terms on the right-hand side of Eq. (1.5), we separate out
the symmetric and skew symmetric parts

r=D+G,I+TH+TI'H=C+E

where D and C are the symmetric and G and E are the skew symmetric parts of the matrices. Transferring
the term x7 Cx; to the left-hand side, we obtain

1d T . ¢
EZ":"“TDx‘ — i Ex, —x,T[HT(I‘H—I",)-?}x, +

T T
ox (B_K) +1(ﬂ) +-r(§£) (_@f_ (Y L (28 (1.6)
2[3x2 L 2ar o [N B ), Tlam ) [T e ), e ), [
V=%(yTAy+x{Nx2+x‘TCx|)

Here, the following relations have been taken into account

T e . | d . 1 r,
X Gh =0, iCx =5§;(X|TC"|)-'2‘111CXI

The matrix H has n? arbitrary elements. Consequently, the function ¥, which depends on them, can
be considered as the required class of Lyapunov functions since the right-hand side of equality (1.6),
which is the total derivative of the function V with respect to ¢, is a quadratic form with respect to
X1,%,%; with a matrix, the diagonal elements of which are not identically equal to zero. This is impossible
to achieve when H = 0.

There is therefore the possibility of obtaining the entire family of criteria for the asymptotic stability
of the unperturbed motion in the first approximation by solely making use of the generalized Silvester’s
criteria [3].

2. THE CONSTRUCTION OF SYSTEMS WITH
A PROGRAMMED MOTION WHICH IS ASYMPTOTICALLY
STABLE “IN THE LARGE”

We introduce the control vectors Q, and Q, into the right-hand side of system (1.2) and obtain
A(xy, Xy, X, %) = B(xy, X1, X2, 1) + O

2.1)
N(X|,i|,X2,t)i'2 = K(Xhil.Xz,t)"'Qz
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When x, is replaced by y using formula (1.3), scalar multiplication of the first equation of (2.1) by y
and the second equation by x; leads to the following analogue of Eq. (1.4)

1d 7 T
——(y Ay+x,Nxy) =
2dt(y y+ X3 NX)

(2.2)
T d af af 1 dA T 1dN
=y {Ql‘*'B-—A[—-l )y—AI(—a ,)f+—at "“—2—!’ )’}‘H‘z(K t 2__!t Xy + QZ)

If the vectors Oy and Q, are chosen in the form

o AP
Q.=-Dy~F|x|-B+A(5;l-)y+A[(axl)f+at] >’

(2.3)
1 dN
o= —K—ETijz - FKx,
we then obtain
F,
22 T+ xINay + x| Fin) ==y Dy *[f Tl 'f)x' ke @4
t

where D, F,, F, are symmetric, positive-definite matrices.

The function y* Ay + xJ Nx, + x] Fix,, constructed as a positive-definite matrix for all x;, xy, x;, ¢,
admits of an infinitesimal higher limit and an infinitely large lower limit. Consequently, when the function
(T Fy + x] F}/2)x, is negative-definite, the right-hand side of Eq. (2.4) will be negative-definite with
respect to xy, ¥y, X, and, in this case, the programmed state x; = x; = 0, x; = 0 of system (2.1) will be
stabilized “in the large”. If this approach is applied to the stabilization of a preset state “on the whole”
then certain additional conditions have to be borne in mind.

We will now explain these conditions. For this purpose, we consider the right-hand sides of Egs. (2.3)
which have the terms

1 dA 1 dN
——y al

containing the highest derivatives x; and x,.

Note that these derivatives do not occur in the equations of the first approximation since the terms
containing them are of a high order of smallness. Consequently, when there terms exist, generally
speaking, one can only speak about stability in a bounded domain of initial perturbations. If, however,
the matrices 4; and N; are obviously independent of x, and the matrix N, is also independent of x,,
the right-hand sides of equality (2.3) do not contain higher derivatives. In this case, the vectors Q; and
0, ensure the conditions for the asymptotic stability of the unperturbed state of the system “on the
whole”.

In spite of the fact that the vectors x; and x, are contained in 4; and N, the following scheme can
be proposed to construct Oy and @, such that the unperturbed state of the system is stable “on the
whole”.

We multiply Eqs (1.1) by the non-singular matrices 447" and NN7! respectively, where A(xy, x,, £)
and N(x;, t) are arbitrary bounded positive-definite symmetric matrices, with bounded derivatives with
respect to all variables for all xy, x,, t = #,, which satisfy generalized Silvester’s criteria. Then, when the
“generalized forces” of the controls Q, and Q, are introduced into the right-hand side, Eqs (1.1) take
the form

A(x,, x5, 1% = AAT' B, + AAT'Q,
N(x;,t)x, = NN['K, + NN/ Q,

Multiplying the first equation scalarly by y and the second equation by x,, we obtain an analogue of
Eq. (2.2) from which it follows that, in the case of the values
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oxy

1 dN(x,,1) ]
2 dt

Q,=-B,+A,A“'[—Dy—nx,+,4-‘?-f— +A[ f+ f) l____d"‘("l"‘z")y]
axl 2 dt
(2.5)

2, =-K, +N|N"[-F2x2 -

we obtain an equation of the form of (2.4).
When the controls are constructed in this way, the conditions for the existence and uniqueness of
the solutions of system (1.1) are not affected in the whole of the phase space for all ¢ = .

3. IMPROVEMENT OF THE QUALITY OF THE TRANSIENT OF
A MECHANICAL SYSTEM BY OPTIMAL CONTROL

Consider the mechanical system

%(g—;]——a%-m ) r=—;q’A(q,r)q+q’a(q,t)+%ao(q,t')

It has been shown in [2] that, for the choice f = H(¢)x and the generalized force vector Q in the form

| a7, aF2 1 dA(gq + x,t) ob 10b, dAHx
=Dy Fx+dary-20 104G+ 28\ Gpypy 00 _ 19k  dAHX _
Q=-Dy-Fx+ Ay * > ' & i @D

the system possesses a preset motion go(t) which is stabilized “on the whole”.
Here

. Voroin, 1
y=x—-H@®x, T, =-2-qTAqu =-2-yTAy

b(x,) = A(go +X,0)dg +a(go +X,8), by =44 Ado +245a+ag

A' is an n X n-matrix with the elements aj; = x7 HTaa,,/ax a;; is an element of the matrix 4, H(r) is an
arbitrary bounded n» X n-matrix with a bounded and continuous derivative with respect to¢, G is a skew
symmetric matrix with elements g,; = —ab,/ax; + ab;/ox,, b,, and b; are elements of the vector b, and D
and F are positive-definite symmetric matrices.

Here, for the deviations x = g ~ g(t) from the preset motion, we have the Lyapunov function and

its time derivative
V=T +x"Fx/2, V==y"Dy+xT(H'F+FI2)x (3.2)

where (HT F + F/2) is a negative-definite matrix.

In the case of the non-linear substitutiony = x — f{(x, f), using a non-linear function f{x, {) with bounded
and differentiable elements, which admits of an infinitely small higher limit and with the choice of the
generalized force in a form which differs from (3.1) in that the Hx is replaced by f(x, ), we obtain

V=T+x"Fx/2, V==y Dy+fT(x,0Fx+x"Fx/2

If the function f(x, f) and the matrix F are chosen such that the function f7 Fx + x7 Fx/2 is negative-
definite, the quality of the transient will have the following value

T [)’TD)’ —(fTFx+%xTFx)]dt =Vs, Vo =V() (33)

to

In order to improve the quality of the transient, we add an additional component M(x, X, t)u to the
vector Q, where M is an n X r-matrix and u is an r-dimensional control vector. Following the approach
proposed earlier [4], we seek the integrand of the functional for the quality of the optimal control in
the form
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WO = Fy(x, x, 1) + uTR(x, X, t)u

where R is a positive-definite bounded symmetric r X r-matrix.
We now construct the function [5]

B =v+u'M"y+F +u" Ru
From the condition aB%au = 0, we obtain u® = —R™!M7y/2 and, from the condition B? = 0, we have
F=-V+y MR 'M"y/4
At the same time, we have
Wo=-V+y "MR'MTy/2
and the following criterion for the quality of the transient
= I V' i . \ i 1
[ [y’Dy—( fTFx+ExTFxJ+5 yTMR"MTdez =V,
fo

where Vj, is the value of V = T} + x” Fx/2 whent = t,.
The addition of the optimal control to Q has therefore improved the quality of the transient since
the magnitude of the quality functional when u = 0 (the left-hand side of (3.3)) has been reduced by

LT y MR M yds
2,
If there is no need to require that the functional
[wOdr
fo
should be a minimum, the function F; can then be chosen from the condition
0<sF<-V+yMR'MTyl4
In this case, a guaranteed estimated of the quality of the transient
[wldr< v,
o

is attained.
Note that, if the problem is solved within the framework of the equations of the first approximation,
the terms

LIPY:L I aTz)
(2” ax | ox

of the second order of smallness in the expression for Q can be equated to zero. In this case, if of the
matrices H = (af/ax)o D, F it is required that H = H” and the matrices

(D—l aA(qut)

2 dAH
T +AH),(F AH )

dt
should be positive-definite then, subject to the condition that the matrix

—~(HTF’+ F’12), where F’=F—-dAH/dt- AH?



Applications of a family of Lyapunov functions 839

should be positive-definite the vector Q can be constructed in the form

ob 10b
=-Dy-Fx+——-——2_G
Q s X ox 2 ox Hx

4. EXAMPLES
1. Stabilization of the orientation of a satellite in an elliptic orbit. When the gravitational moment is
used to stabilize the rotational motion of the orientation of a satellite, the following equation of motion
holds [7]
o - {Vv)a+m(V)sinot=2[(V)+u

where

. 2
[(V):M, miv =-—n—-, n2=3t—£’ a:ze
l+€gcosv 1+ ¢&cosv B

© is the angle of deviation of the OZ axis of the satellite from the radial position, v is the true
anomaly, & is the orbit eccentricity (0 < & < 1) and derivatives with respect to v are denoted by dots.
We take the control vector  in the form of the sum

u=uy(v,o, )+ M

where ug is the control moment in the case of the unperturbed motion and M is the stabilizing moment.
In this case, the equation of the perturbed motion has the form [6]

¥ = =I(V)x — g(V, x)sin % +M, g(v,x)=2m(v)cos(cg + %)

‘We make the substitution

y=x+Hx, H=const>0
On replacing ¥ byX =y — Hy + H%;, we obtain

= ~I(V)(y - Hx) — H%x + Hy - g(V, x)sin-’zi+ M

We multiply this equation by y and choose M in the form
M=-Dy-Fx

and introduce the notation

D=D,-H+Kv), F=F+H?- Hl(v)+§gy—'ﬁsin%
X

After replacing y in the expression (yFx) and transferring (xFx) to the left-hand side, we obtain

Il d o 2 2 F 2
—— + F =-Dy* ~-{ FH - —
27 (y x°) y ( 2]:

If it is required that the conditions

D>0, F>0, FH—§>0

be satisfied, then, in the case of control moment (4.1), the unperturbed motion will be stabilized on
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the whole. Here, the quality of the transient is determined by the equality

°f[Dy2 +(FH - gﬂdt =5+ Fxg3 Yo = y(to) o = X(to) (4.2)

o

2. Stabilization of the programmed motion of a mathematical pendulum with a moving point of suspension.
Suppose the point of suspension of a pendulum executes arbitrarily specified planar motions, which
are described by the laws ©(¢) and v(¢), along the vertical and horizontal axes of a fixed system of

coordinates.
When

m=1, I=1/a, a>0

where [ is the length of the pendulum and m is the mass, the following equation of motion [8]
holds

$+av(t)cos® + aOsin @ +agsing = M,

We substitute ¢ = ¢y(f) + x, where ¢y is the specified programme and we represent the control moment
in the form of the sum

M' = Mo + M, Mo =(bo +avcos(x+(po,t)
where M is the stabilizing moment. We then obtain the equation of the perturbed motion in the form
E+ksin(x+9y)=M, k=a@+g)

This equation can be represented in the form
. . X x
X =~g(x,t)sin 2 +M, g=2k cos((po +§-)

Hence, we obtain an equation which is a special case of the equation of the perturbed motion obtained
in Example 1 when /= 0. Consequently, the equality

td » 2 2 F 2
_— + Fx“Y=-Dy" -| FH —— |x
2 !t(y ) y ( 2

D=D,-H, F=F,+H2+§-(fﬁ

sin%, y=x+Hx, H=const>0
holds, where D; and F; are elements of the stabilizing moment (4.1) while satisfy the conditions
D>0,F>0.

The quality of the transient (4.2) is attained in the case of stabilization with such a moment.

3. Stabilization of the programmed motion of a gyropendulum on a moving base. Suppose a gyropendulum,
which has an angular spin velocity equal to {, = {(¢), is placed on a platform which executes vertical
motion in accordance with the law {n{. The position of the OZ axis of symmetry of the gyropendulum
relative to a fixed system of coordinates {m{ (the O axis is the vertical axis) is specified by the angles
o and B [3, p. 56]. Here, the kinetic energy T and the potential energy II of the gyropendulum take the
form

= %A((ic2 + P2 cos? 0L)+%C((i>+[‘3sinoz)2 -
—Mléo(dsin a.cosP + B cosasin B)+%Mé,2,

IT=Mgl + Mgl cos accos B
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where M is the mass, / is the distance from the point of support to the centre of gravity, 4 is the moment
of inertia about the OX and OY axis and C is the moment of inertia about the OZ axis.
We shall describe the motion of the gyropendulum by means of the Lagrange equations

dar, er, am__
£33 g 3 +0 q =0, ¢,=B, 3=¢

In order to obtain the equations of the perturbed motion, we replace g by go(f) + x and obtain
T= T2 + Tl + To
T, .0 . 1 .2, .2, Lo
T, = —Z-A(Jc,2 + X2 cos® o) + 3 C(i3 + 52 sin? o) - Cxy iy sino

T, =i"b(x,1), Ty= -;—be(x,t)
b= (b, by, b3)
b = Adag - M";o sin(og + x;) cos(By + x5)
by ={Acos?(ag +x,) + Csin(et + x,)IBo — Cg sin(0tg + x,) —
-Mi to cos(0ty + x))sin(B, + x,)
by = —Cﬂo sin(og + x)) + Cpy
by = AL63 + 3 cos?(aty + x,)]+ CL@, — By sin(og + x,)1? -
—2Mléo[do sin(otg + x; ycos(Bg + x,) +
+f30 cos(0ty + x;)sin(By + x)]+ M3
We note that
an=A, ay=ap=a; =a;, =0, ayp = Acosz(qo +x)+ Csinz(ao +xp)
dy3 = ay =~Csin(0 +x;),a43, =C

are the elements of the 3 X 3-matrix A° of the quadratic form 7.
We choose the three-dimensional vector of the generalized forces in the form (3.1) with the addition
of the term a11/dq to the right-hand side and with of A replaced by A°. In this case, the programmed motion

a=0g1), B=Po(d, ©=q0)

occurs and it is stabilized as a whole. The quantities occurring in O, which have not been indicated above,
have the following expressions

, | 1 . .
7‘2=§A(y,2+y22cos2a)+EC(y§+y§sm2a)-—Cy2y3sma, o =0, +x

A’ is a 3 X 3-matrix with elements aj;, which are defined in terms of the elements a;; of the matrix A°
in the formaj; = xTHTaai,-/ax, y=x-— F;(t)x, H(t) is an arbitrary 3 X 3-matrix with bounded and continuous
elements, G is a skew symmetric 3 X 3-matrix with elements g; = —ab,/ax; + ob;/ox,, b, and b; are
elements of the vector b, and D and F are positive-definite symmetric matrices.

With this choice of Q, we have the Lyapunov function and its time derivative in the form (3.2),
where H(?) is chosen such that the matrix (H” F + F/2) is negative-definite. In this case, we obtain the

following quality of the transient

o0

| [yTDy—xT[HTF+-§-)x}dt =V, Vo =V(t) (4.3)

]
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This quality can be improved by adding the additional component u° to Q and requiring that the
functional of it

°f[-v +(u®)?1dt
fo

should attain a minimum value.

As in Section 3, we obtain that u® = —y/2 for which, in the case of the improved quality, we have a
relation which dlffers from (4.3) in the addition of the term y*/2 to the integrand. Note that the value
of the quality functional when u° = 0 is reduced by

17 2
—fydt
2 ,{y

We will now consider one important special case when the vertical position of the axis of the
gyropendulum ay = &g = By = Py = 0 is the unperturbcd state in the case of a constant spin velocity
around the OZ axis (¢ = w = const). Then, the position of the OZ axis is defined by the generalized
coordinates ¢, = o, q; = B.

In this case

= %A(ﬁ,2 + x% cos? x,)+-;-Cj:% sin® x,
Ty, = &yb, + Xpb,y, Ty = —(Cco2 +ME2), by =Co?+ M2,
= %A(y,2 +y2 cos? x,)+%Cy§ sin? x,
b = —Mléo sinx, cosx,, b, =-Cwsinx, — Mlﬁo cos x; sin x,
812=- 8 =Cwcosx,
The elements of the matrix of the quadratic from T, have the form
a;, =A, ay =Acos’x, +Csin’x,, a), =ay =0

Consequently, the equalities

aA° -0, by _ 0 ob _ ~MIE, sinx, cos x,
a ox ot [-Mif,cosx,sinx,
hold.
We select H = —I, where [ is the identity matrix. Then
y=x+Ix
dAon 0. 0 ~Ax,
—AF-Ax= ~(Acos? x, + Csin? Xy )k ~(C - A)x x,

@L:“O“’ day, =“(C—A)sin 2x,
0

l» a|'|=0

0o
(A= O)x,y, sin2ux,

a3, =(A-C)x;sin2x;, A'y= l'

9% _ %(C—A)ir%sin%. 3% _L(c-apsinax,
aX 0 " ax 0
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_ 0 -Cwcos x;
"l Cwcosx, 0

X
X2

E’N

a1 —Mglsin x, cos x,
~Mglcosx, sinx, |

If the problem is solved in the first approximation, we have
5 Il M B
-Mglx,
B Mléox, + Ax, -Cax,
Ml Con

Ax, +Cax,
If we choose D and F in the form of diagonal constant matrices with posmve elements d,, d; and
f1, > respectively, we obtain

X +x

j2+X2

0, = ~x,(Mgl+d, + f, + MIE3) - Cx, - %,(d, — A)
0, = Cax, — X, (Mgl +d, + f, + M)~ 35(d; - A)

In this case, the Lyapunov function and its time derivative are expressed in the form
| |
V=07 + 3D+ il + £x5)

V=-d\yl ~dyy} - fix - fox3

Consequently, the following quality for the transient holds

I(d|y| +d2y2 +f|x, + fzxz )dt = Vo, Vo V(to) (4.4)

fo

If the component u° of the optimal control is added to the vector Q in order to improve the quality
of the transient then, following what has been stated in Section 3, we have u’ = —yp and also an

improved quality for the transient which differs from (4.4) in the addition of the term w3+ yz)/2 to
the integrand.

In this case, the magnitude of the quality when u® = 0 is improved by an amount

l o0
— [OF +yd)ds
2,o
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